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NOTE ON A POLYNOMIAL OF EMMA LEHMER 

HENRI DARMON 

ABSTRACT. Recently, Emma Lehmer constructed a parametric family of units 
in real quintic fields of prime conductor p = t + 5t3 + 15t2 + 25t + 25 as 
translates of Gaussian periods. Later, Schoof and Washington showed that these 
units were fundamental units. In this note, we observe that Lehmer's family 
comes from the covering of modular curves X1 (25) -* Xo(25) . This gives a 
conceptual explanation for the existence of Lehmer's units: they are modular 
units (which have been studied extensively). By relating Lehmer's construction 
with ours, one finds expressions for certain Gauss sums as values of modular 
units on X1(25). 

1. LEHMER'S POLYNOMIAL 

Throughout the discussion, we fix a choice {',} of primitive nth roots of 
unity for each n, say by 4n = e 

Let 

P5(Y, T) Y + T2Y4 -2(T3 +3T2 + 5T+ 5)Y 

(1) + (T4 +5T3 + 11T2 + 15T + 5)y2 

+ (T3 +4T2 + 10T + 10)Y + 1 

be the quintic polynomial constructed in [5]. The discriminant of P5(Y, T), 
viewed as a polynomial in Y with coefficients in Q(T), is 

D(T) = (T3 +5T2 + 10T + 7) 2(T +5T3 + 15T2 +25T+ 25)4. 

The projective curve C in P2 defined by the affine equation (1) has three nodal 
singularities whose T-coordinates are the roots of the first factor of D(T) . The 
points (y, t), where t is a root of the second factor, are branch points for the 
covering of C onto the T-line. 

As shown in [5], the polynomial P5(Y, T) defines a regular Galois extension 
of Q(T) with Galois group Z/5Z. By the analysis above, it is ramified at the 
four conjugate points T = -V54'5, V52, 2-v5 , Iv5 2, the zeros of the 
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minimal polynomial 

T4 +5T3+ 15T2 +25T+25. 

(Here V'5 denotes the positive square root.) If t E Z is chosen so that 

p=t4 +5t3+ 15t 2+25t+25 

is prime (hence, in particular, p _ 1 mod 5), then the roots r1, ..., r5 of 
P5( Y, t) are translates of Gaussian periods: 

ri = (t/5)ti + [(t/5) - t2 1/5, 

where ii = r and Fj denotes the jth coset of (Z/pZ)*5 in (Z/pZ)*. 
Since C admits a five-to-one map to P1 which is totally ramified at four 

points, the geometric genus of C is 4 by the Riemann-Hurwitz theorem. On the 
other hand, C is realized as a plane curve of degree d = 6, and its arithmetic 
genus is (d - 1)(d - 2)/2 = 10. Let C' denote the normalization of C; it is 
a smooth projective curve of genus 4. The covering C' -- P1 defines a Galois 
covering of P1 with Galois group Z/5Z, and has the following properties: 

1. It is ramified only over the four closed points in R = { V'S5, v34'5, 

2. The closed points of the fiber above xc E P1 are rational. 

Proposition 1.1. Properties 1 and 2 determine the covering C' uniquely up to 
Q-isomorphism. 
Proof. Let (P1 -R) be the projective line with the points of R removed, viewed 
as a curve over Q. The space V = Hlt(P1 - R, Z/5Z) is a vector space of 
dimension 3 over F5, and is endowed with a natural action of Gal(Q/Q). In 
fact, one has 

V = Het(PI - R 9 5) (& #5 

where j5 denotes the group scheme of 5th roots of unity. By Kummer theory, 
Het(PI - R, j5) is identified with the subspace of Q(T)*/Q(T) spanned by 
the elements 

(T+ 4'5V)/(T - 42Vr5) (T - 42V35)/(T+ C1/5 ) 

(T + QV35 )/(T - C2 ) (T - -2 v)/(T + 4'5v3), 

whose product is 1. Hence the action of Gal(Q/Q) on Het(PI - R, u5) fac- 
tors through Gal(Q(C5)/Q), and is isomorphic to the regular representation of 
Gal(Q(C5)/Q) minus the trivial representation. It follows that V decomposes 
as a direct sum of three irreducible one-dimensional Galois representations, 

2 

where VJ is the trivial representation, and V@, V(0 denote one-dimensional 
spaces on which Gal(Q(C5)/Q) acts via the Teichmtiller character co and the 
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square of the Teichmiiller character co 2, respectively. In particular, VJ is the 
unique one-dimensional subspace of V which is fixed by Gal(Q/Q). But the 
cyclic quintic coverings of P1 which are Galois over Q and unramified outside 
R correspond exactly to such subspaces. Hence, property 1 determines C' 
uniquely as a curve over Q. (Alternatively, one could use the "rigidity criterion" 
of Matzat, cf. [6, p. 368].) It is not hard to see that there is a unique rational 
form of the covering C' such that the closed points above 00 E P1 are all 
rational (twisting this rational form by a cocycle c in H1(Q, Aut(C'/P1)) will 
cause these points to be defined over the larger extension "cut out" by c). Thus, 
property 2 determines C' -+ P1 up to Q-isomorphism. 0 

2. A MODULAR COVERING INTERPRETATION OF LEHMER'S QUINTIC 

We assume in this section some basic facts about modular forms and the 
geometry of modular curves. A good reference for this material is [7]. 

Let Xo(25) and X, (25) denote the modular curves of level 25, compactified 
by adjoining a finite set of cusps. The curve XO(25) is of genus 0 and is 
isomorphic to P1 over Q. The covering X1(25) --+ XO(25) is Galois with 
Galois group canonically isomorphic to G = (Z/25Z)*/(?1). The quotient X 
of X1 (25) by the involution 7 E G gives a cyclic covering of Xo(25) of degree 
5. 

Let Ts = t1(z)/i1(25z) and Fs = (?7(z)1/1(5z))6 be Hauptmoduls for XO(25) 
and XO(5), respectively. One has 

5 4 ~3 2 
F5 = Ts/(TT" + 5Ts + 15T; + 25T5 + 25). 

The curve Xo(5) has two cusps C1 and C2 corresponding to the values Fs = 0 
and F5 = oo, respectively. Hence, XO(25) has six cusps: a unique one lying 
above C1, corresponding to Ts = 0; and five cusps above C2, given by T5 = 
00, V3455, V/352, _/5- V/,5-C-2 (cf. [1]). The covering X -* Xo(25) is 
ramified at the four nonrational cusps, and the fiber above the cusp T5 = 00 

is composed of rational points (cf. [1, p. 226]). By Proposition 1.1, X can be 
described by Lehmer's quintic; the zeros r1, ... , r5 of P5 (Y, T') are modular 
functions on X1 (25) (in fact, on X ) with divisor supported at the Pi, where 
P1, ..., P5 are the closed points of X which lie above the cusp T5 = 00 of 
XO(25). By using Hensel's lemma to solve explicitly the equation P5(Y, T5) = 

0, one obtains the following q-expansions for the ri: 
3 4 10 11 12 13 15 17 

r,=-q +q+q -q -q +q q +q 
-1 6 7 10 113 r2=q +q +q -q -q +q q 

3 4 6 12 14 18 20 (2) r3= -q-q +q +q -q -q +q +q 
-2 2_ 5 15 17 18 r= -q -q-q -q +q +q +q 

r =q -I+q5 +q 7-q 8-q 12+q 13-q 1+ . 
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By [8, p. 548], the transformation 

(T5 + 2) + T5r - r2 
r ~- 

1+(T5+2)r 

permutes the roots of P(Y, T5) cyclically; one can thus label the ri in such a 
way that a generator of Gal(X/X0(25)) - Z/5Z sends ri to r1+1, where the 
subscripts are taken modulo 5. The five cusps of X lying above the cusp T5 = xc 
are permuted cyclically by the Galois group of X over XO(25). By considering 
the q-expansions above, we may fix a labelling of the cusps P1, ... , P5 so that 
a generator of Gal(X/X0(25)) sends Pi to Pi+, and such that 

Divisor(r1) = 3P1 - P2 + P3 - 2P4- P5. 

Now, let a belong to Z/25Z, and define 

8Pa(T)= p(a/25; T), 

where 

P(Z; T = + ( i- _ _ _ 

Z2 k(z-n-mT)2 (n+mT)2J (m, n)EZ2-o ' 

is the Weierstrass p-function. It is well known that the functions 

Pa=, b (T) a(T) Pb(T) 

are modular units on X1 (25) . The divisors of these functions are computed in 
[1]. In particular, we find that 

Divisor P7,9P63 1P8) = 3P1 - P2 + P3 - 2P4- P5 

where the Pi denote the cusps on X which are above the cusp xc of XO(25). 
By expressing the function on the left in terms of so-called Klein forms t(a a2) 
(cf. [2]), the above simplifies to give 

( t(Q1)t(07) Divisor = 3P - P2 + P3 - 2P4- P5. 
(o,9) (Q 12) 

Let us abbreviate t(o a) to ta . By comparing divisors and q-expansions, one 
finds the following infinite product expressions for the ri: 

r, = t t7 (25T) =-q I7 (1 -q)/ I7I (1 qn) 
n 1I2 n?I1, ?7(25) n=?9, ?12(25) 

r2 = t2 t11 (25T) = q-1 II (I1-q n)/2 1 (12 5 
1i 7 n=?2 , ?1 1(25) n=i1? I ?7(25) 
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r3= t t (25T) -q 11 (1 -q)/ 
n 11 (1-q n), 

i 2 n=?4,?3(25) n=-? 1, ?2(25) 

r4 =t8 t6(25T) =-q II (1 -q n)/ II (-q n), 

3 4 n-?8,?6(25) n=?3,?4(25) 

r5 =t9 tI2(25T) =q -1 r (1 - qn)/ 1 (1 - qn) 
t6 8 n=-+9,?12(25) n-+6,+8(25) 

The Galois group Gal(X1(25)/XO(25)) = (Z/25Z)*/(?1) acts on the ta by 
multiplying the subscripts (which are viewed as belonging to (Z/25Z)*/( ? 1)). 
Hence, to go from ri to ri+I, one applies the Galois automorphism 2 E 
Gal(X/XO(25)) = (Z/25Z)*/(?1, ?7). 

3. GAUSS SUMS 

Given a prime p - 1 (mod 5), let Ip: Fp -- C* be the additive character 
sending 1 to 4p . We consider the Gauss sum 

g(p) = E (x)Tp (x), 
xEFp 

where x is a character of F* of order 5. The value of g(p) is independent of 
p 

X, up to the action of Gal(Q(C5)/Q). 
By combining Lehmer's explicit determination of the roots of her polynomial 

as Gaussian periods, and our identification of these roots with certain modular 
forms of level 25, we obtain: 

Theorem 3.1. If (T)/q(25T)= n E Z, and ?(5T)6/(?7(T)q(25T)5) =p is prime, 
then 

4 

fl(J(T)/q(25T) - -1 (5V5))i/5 = (n/5)g(p), 
i=l 

where ai E Gal(Q(C5)/Q) sends C5 to 4'. 

There is some ambiguity in the formula, since the value of g(p) depends on 
the choice of a multiplicative character x, and the left-hand side is really only 
defined up to a fifth root of 1. We are asserting that there is a way of making 
these choices so that the formula holds. 

Observe that the left-hand side is a modular unit (i.e., a unit for the covering 
X1 (25) -- X0(l)). Thus the above expresses Gauss sums as values of certain 
modular units on X1 (25). It seems that the other coverings of lower degree 
studied by Lehmer yield similar results. It would be interesting to obtain such 
formulas a priori: this might provide a justification for the fact that translates 
of Gaussian period polynomials yield cyclic units for extensions of small degree. 

Note. The idea of studying families of units in cyclic extensions of Q aris- 
ing from the modular covering X1 (N) -- Xo(N) has been explored by Odile 
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Lecacheux (see, for example, the paper [3], which studies units in sextic exten- 
sions which arise from the modular covering X1 (13) -+ XO( 13)). Independently 
of the author, Lecacheux has also observed the connection between Lehmer's 
quintic and the modular curve X1 (25) [4]. 
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